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Understanding the transcription regulatory network at the genome level has been a 

focus of many researchers over the past decade and it remains rightly so. By unlocking how 

genomic information is translated into gene regulation will allow us to better understand 

evolution, development and biological processes that have gone astray leading to diseases 

such as cancer. So far, our understanding of gene regulation has been derived from studies 

that have focused on detailed characterizations of a specific gene or gene family, but genome-

scale analyses are now hinting the re-evaluation of such principles. For example, it is 

previously thought that a typical RNA polymerase II promoter contains a TATA box that is 

located 30bp upstream of the transcription start site. However, this may not be entirely true as 

recent genomic studies have shown that ~50% of human genes have alternative promoters 

(Kimura et al., 2006). To make matters even more complex, it has been estimated that there 

are 200-300 transcription factors in humans that bind to core promoters to drive gene 

transcription (Farnham, 2009). Thus, to fully comprehend the regulatory network of these 

transcription factors, it is of utmost importance to study the machinery of these proteins at the 

genomic level. 

 Fortunately, the technological advancement of chromatin immunoprecipitation 

followed by high-throughput sequencing (ChIP-seq) has allowed investigators to create a 

global map of specific protein DNA-interactions in a given cell type. ChIP-seq has been 

widely used to study transcription factor binding, histone modifications and DNA methylation 

(Aleksic and Russell, 2009). Given the different utilizations of the ChIP-Seq technology, I 



will be focusing this review on 

the application of this 

technique in identifying 

transcription factor binding 

sites (TFBS). In a ChIP-seq 

experiment (Figure 1), DNA 

fragments associated with a 

specific protein are enriched, 

and then subjected to high-

throughput sequencing. The 

DNA-binding protein is covalently linked to DNA by treating cells with a cross-linking agent, 

typically formaldehyde. The chromatin is isolated and is sheared by sonication into small 

fragments, which are generally in the 200–600 bp range. An antibody specific to the protein 

of interest is used to immunoprecipitate the appropriate DNA–protein complex. The 

crosslinks are reversed and the released DNA is assayed to determine the sequences bound by 

the protein. The generated sequences are then aligned back to the genome of interest to 

identify regions that are enriched with mapped reads, which are often referred to as peaks and 

mark the location of DNA-protein interaction.  

The use of high-throughput sequencing in ChIP-seq experiments offers better 

advantages over its predecessor, ChIP-chip, where the immunoprecipitated DNA fragments 

are labeled with fluorescent dyes and hybridized to microarrays. One of the greatest benefits 

that ChIP-seq offers is its wide coverage that allows for a relatively unbiased genome wide 

analysis of TFBS. Although arrays can be tiled at a high density in a ChIP-chip experiment, 

Figure 1: ChIP-Seq is used to analyze protein-DNA 
interactions (Wikipedia) 



this requires a large number of probes and poses a significant cost-challenge, especially for 

large mammalian genomes. For example, a recent genome-wide mapping and analysis of 

active promoters in mouse embryonic stem cells and adult organs used a total of 37 arrays to 

survey the mouse genome (Barrera et al., 2008). Furthermore, the base pair resolution offered 

by ChIP-seq is an added bonus of this technique. Probes used in ChIP-chip experiments are 

typically several hundreds of base pairs in length, making identification of the actual TFBS 

difficult. Contrary to ChIP-chip, the actual binding site of a factor often lies within 10-30bp of 

the peak in a ChIP-seq analysis (Kharchenko et al., 2008). The base pair resolution of ChIP-

seq can also allow for identification of novel transcription factors binding motif. A recent 

analysis identifying β-catenin binding regions in colon cancer cells using ChIP-seq clearly 

illustrate this advantage (Bottomly et al., 2010). Thirdly, ChIP-seq produces fewer artifacts 

compared to ChIP-chip as it does not suffer from the noise generated by the hybridization step 

in a ChIP-chip experiment. The GC content, length, concentration and secondary structure of 

the target and probe sequences often contribute to cross-hybridization between imperfectly 

matched sequences (Hoffman and Jones, 2009). Fewer DNA amplification cycles are needed 

for ChIP-seq and this helps in minimizing the number of artifacts that can arise from PCR 

bias. Lastly, for investigators working with limited samples, ChIP-seq is a preferred tool due 

to its relatively low input sample requirement (~10ng) (Park, 2009). 

Given the repertoire of benefits offered by ChIP-seq, it is still a nascent technology 

that faces many challenges both experimentally and computationally. In this review, the 

experimental challenges will be summarized and more attention will be given to address the 

computational problems associated with ChIP-seq. Like any other ChIP experiments, the 

accuracy of ChIP-seq depends heavily on the specificity of the antibody used, thereby 



necessitating a rigorous validation of the antibody. The ChIP steps in ChIP-seq could give rise 

to potential artifacts. For example, shearing of the DNA often does not result in uniform 

fragmentation of the genome. Repetitive sequences can also obscure the validity of ChIP-seq 

results as those regions might appear to be enriched after the alignment step. Therefore, an 

appropriate control experiment is necessary to eliminate any sources of artifacts. A well-

accepted control in ChIP-seq is comparison with input DNA (DNA prior to precipitation), 

which corrects for most bias related to the variable solubility of different regions, the shearing 

of DNA and amplification.  

Sequencing errors would result in partial alignment of the short reads with gaps and 

mismatches. For the widely used sequencing platform, Illumina, the sequencing errors are 

most prominent at the sequenced 3’ tags and notably, the mismatch frequencies towards the 3’ 

termini accounts for 41–75% of all observed mismatches (Kharchenko et al., 2008). To 

optimize the use of any datasets, caution should be taken to include only partially-aligned tags 

that will provide biologically important information. Another experimental difficulty in ChIP-

seq is determining the depth of sequencing. When a large number of binding sites are present 

in the genome, one would expect that a larger amount of sequencing is required to obtain a 

significant fold-enrichment at each bound region. One way to determine the sequencing depth 

in ChIP-seq would be to figure out the “saturation point” – the number of binding sites 

identified does not change when more tags are sequenced.  

The first computational challenge of ChIP-seq is mapping the reads to the reference 

genome and this step is one of the most important and computationally intensive of the 

experiment. A successful ChIP-seq experiment typically generates about 2-20 million mapped 

reads and it is a daunting task to accurately align these sequences back to the genome. The 



large dataset would take conventional alignment algorithms hundreds or thousands of 

processor hours and thus leads to the development of new generation aligners (Park, 2009). 

Each aligner is a balance between accuracy, speed, memory and flexibility, and to date, there 

is no aligner that offers the best of all these aspects. Ideally, the alignment process should be 

fast and minimizes the number of mismatches due to sequencing errors, SNPs and indels or 

the difference between the genome of interest and the reference genome. Some of the 

commonly used aligners are Eland, the default aligner of the Illumina sequencing device 

which offers efficient and fast alignments of short reads. Another popular aligner that is an 

excellent SNP detector is Mapping and Assembly with Qualities (MAQ), which utilizes mate-

pair information and estimates the error probability of each read alignment using a Bayesian 

statistical model (Li et al., 2008). Bowtie is an example of an ultrafast aligner that is able to 

align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 

gigabytes (Langmead et al., 2009). Many current analyses do not account for non-unique 

reads and this would exclude identification of TFBS in repetitive regions. Conversely, 

including non-unique reads would improve the sensitivity of the analysis, but at the expense 

of specificity. Therefore, it is imperative to strike a balance between specificity and sensitivity 

as to optimize the numbers of true positives in the analysis. 



The next computational step after alignment is identifying genomic regions that are 

enriched with sequenced tags. The most basic way to determine enriched domains or “peaks” 

is by scoring the number of 

sequenced tags in a window of 

given size (Pepke et al., 2009). 

While this method is effective at 

calling regions with strong ChIP 

enrichment, it can be highly 

impaired by the presence of 

artifacts in the experiment. For 

example, “open” chromatin states 

in the genome that are more 

susceptible to fragmentation, copy 

number variation and natural 

polymorphisms will lead to 

generation of false enrichment 

regions (Hoffman and Jones, 

2009). Additional information will be required to rule out these false-positives and some 

algorithms have been developed to overcome this challenge. The directionality of sequencing 

can be adapted to discriminate true binding events from artifacts, as demonstrated by QuEST 

which uses a kernel density estimation approach to generate peak-calls (Valouev et al., 2008). 

Because the DNA is sequenced from the 5’ end, one would expect that the 

immunoprecipitated DNA will be sequenced equally from both the Watson and Crick strand, 

Figure 2: DNA fragments from a chromatin 
immunoprecipitation experiment are sequenced from 
the 5′ end. Therefore, the alignment of these tags to the 
genome results in two peaks (one on each strand) that 
flank the binding location of the protein or nucleosome 
of interest. (Park, 2009)  



giving rise to bihorn-peaks that have consistent distance between the two peaks (Figure 2). 

Peaks that only show enrichment from one direction will indicate presence of artifacts and can 

be filtered from the analysis. In general, peaks identified in a ChIP-seq experiment can be 

classified into three groups; sharp peaks that cover a few hundred base pairs or less, localized 

but broader peaks of up to a few kilobases and broad domains of up to several hundred 

kilobases. Typically, sharp peaks are associated with protein-DNA binding interactions, as in 

the case of transcription factors and broader regions are associated with histone modifications 

of the genomic region (repressive vs. active) (Pepke et al., 2009).  

Identification of ChIP-enrichment regions is followed by processing methods that 

allow for the identification of the original binding site, termed “summits”. This is typically 

done by “smoothening” the profile of each strand (i.e. 

replacing tag counts at each site with the summed value 

within the window centered at the site and merging 

consecutive windows that exceed a threshold value).  

Both the Watson and Crick strand profiles are combined 

either by shifting each tag distribution towards the 

center (Figure 3) or by extending each mapped tags then 

adding them up together (Figure 4) (Park, 2009; 

Valouev et al., 2008). In theory, the tag extension 

method is more precise at identifying the binding site 

but requires the fragment size to be known and the 

assumption that all fragment sizes are uniform to be made.  

Figure 3: A signal profile is 
generated by shifting the 
distribution of the Watson 
strand (blue) reads and Crick 
strand (red) reads towards the 
center (purple). (Pepke et al., 
2009) 



Another important consideration to account for during peak-calling is the background 

noise level. Measuring the fold ratio of the ChIP sample signal relative to that of a control 

(e.g. input DNA) is a good indicator of peak validity but it may not be sufficient statistically. 

For example, a fold ratio of 5 measured from 50 ChIP samples and 10 control samples do not 

hold the same statistical significance as measured from 500 ChIP samples and 100 control 

samples (Park, 2009). To bypass this, algorithm developed based on a Poisson distribution 

model would account for both the number of sequenced tags and fold ratio (Visel et al., 2009). 

An added advantage of using the Poisson distribution is that it can be modified to account for 

regional bias in tag density and to model the background tag distribution in the absence of a 

control (Zhang et al., 2008). Other statistical distributions used to model the background in 

absence of a control include negative binomial (Ji et al., 2008) and Monte Carlo (Fejes et al., 

2008).  

Currently, there are many available peak-calling software, each with its pros and cons 

and are summarized in Table 1. The main criterion in determining the top candidate peaks is 

either a signal that exceeds a set threshold or a minimum enrichment relative to background or 

Figure 4: A signal profile is generated by extended each mapped reads by an 

estimated fragment size and adding them up together. (Park, 2009) 



both. All the software listed in Table 1 utilizes either one or both these criterion and provides 

a default value. Nevertheless, investigators have the option of adjusting their own parameters 

when analyzing their data by specifying a false discovery rate that best suits their dataset.  

Most of the software in Table 1 (e.g. CisGenome) computes a P-value and it is often thought 

that one can compute the FDR based on the given P-value for any distribution. However, 

there is a caveat associated with this method of FDR computation; the distribution assumption 

made in the P-value calculation may not be appropriate and therefore a correct FDR could be 

very different from the one obtained from the P-value threshold. Other programs (e.g. MACS) 

instead address this problem by calculating the FDR as the ratio of the number of peaks called 

in the control to the number of peaks called in the ChIP experiment (Pepke et al., 2009).  

Once candidate peaks for protein-DNA binding regions are identified, the next step in 

the analysis is discovery of sequence binding motifs and this can be done through motif-

finding algorithms such as MedScan and WebMOTIFS. The sequences for the top candidate 

peaks are submitted to these algorithms, which will search for potential motifs and return the 

results with statistical significance associated to every motif identified. In the best case 

scenario, a single motif will have a much higher statistical significance compared to other 

matches found but unfortunately, that is not always the case. Sometimes, a series of motif 

with a gradient of statistical significance is identified and further analysis is needed to 

examine the possibility of combinatorial interactions between these motifs. The process of 

motif identification is also not straightforward and any potential binding motif has to be 

validated before it can be declared bona-fide. As of now, there are no reliable computational 

methods that can be used to verify a binding motif; instead, experimental methods are used. 



Another analysis that can be done after peak-calling is associating these peaks to 

candidate genes in the genome. The location of the peaks are usually annotated to key features 

such as the transcriptional start site, exon–intron boundaries and the 3′ ends of genes using 

correlation analysis and advanced clustering methods. In general, many parameters can be 

adjusted by researchers when mapping peaks to candidate genes. For example, peaks can be 

mapped to genes if the peak was within ± 20kb of the gene’s transcription start site (TSS) 

(Johnson et al., 2007) or within -10kb from the TSS to +1kb from the transcriptional 

termination site (Wederell et al., 2008). Even though there are different methods that can be 

used to associate peaks to gene, many complications can still arise. This is especially true if 

the peak falls in a gene-rich region and the gene closest to the peak may not be regulated by 

that peak. Alternatively, the same peak could be co-regulating all these genes at the same 

time. The complexity of this issue becomes even more dramatic as one moves from a large 

mammalian genome to a smaller, more gene-compact genome. These issues could hopefully 

be solved by better association metrics that are still in development, such as those that uses 

chromosome conformation capture approaches (Hoffman and Jones, 2009). 

The final and most important challenge when analyzing peaks from a ChIP-seq 

experiment is to determine the functional relevance of the identified binding sites. Many 

issues have crept up in previous studies that suggest the non-functionality of these binding 

sites. For example, in the mammalian system, nearly half of the identified binding sites in the 

mammalian system are associated with inactive genes (Wederell et al., 2008). In addition, the 

transcription machinery is further complicated by the existence of co-factors that are required 

for gene transcription. There are a couple of methods that can be used to analyze the 

functionality of the predicted binding sites, although no large-scale in vivo techniques have 



been developed to address these concerns. For example, it is known that the TSS of active 

genes are enriched with histone H3 trimethylated at lysine 4 and enhancers are enriched with 

histone H3 monomethylated at lysine 4 (Barski et al., 2007; Heintzman et al., 2009). These 

histone modification landmarks can be accounted for when analyzing transcription factor 

binding sites identified from a ChIP-seq experiment. Another way to test the functionality of 

these binding sites is to compare the expression of candidate genes in the presence and 

absence of the factor of interest. However, the redundant factors that are present in the 

genome could interfere with the results of this experiment. A more appropriate method to test 

the functionality of predicted binding sites would be to generate a reporter construct for the 

binding site of interest. The predicted motif could be hooked up to minimal promoter 

upstream of a reporter gene and alteration in reporter activity would prove the functionality of 

the site. The best approach to test the functionality of a binding site is to directly delete or 

mutate the site in vivo and observe if the expression level of the gene is affected. 

Nevertheless, it is almost impossible, time-wise and cost-wise, to perform this experiment on 

all the binding sites identified in ChIP-seq. 

Even as a relatively nascent technology, ChIP-seq demonstrates promising potentials 

as the new tool in understanding genome-wide gene regulatory networks. ChIP-seq offers 

wider coverage of the genome, better resolution and fewer artifacts compared to its 

predecessor, ChIP-chip. Nevertheless, the technology is not perfect, with many challenges yet 

to be overcome. The high cost of sequencing, immense data processing and lack of accessible 

platforms are the biggest barriers for most investigators. Many improvements made in the 

field these past few years and current work in progress will hopefully solve most of the issues 

associated with ChIP-seq in the near future.  



 

 (Park, 2009) 
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